Basal ganglia hypoactivity during grip force in drug naïve Parkinson's disease.

نویسندگان

  • Matthew B Spraker
  • Janey Prodoehl
  • Daniel M Corcos
  • Cynthia L Comella
  • David E Vaillancourt
چکیده

The basal ganglia (BG) are impaired in Parkinson's disease (PD), but it remains unclear which nuclei are impaired during the performance of motor tasks in early-stage PD. Therefore, this study was conducted to determine which nuclei function abnormally, and whether cortical structures are also affected by early-stage PD. The study also determined if cerebellar hyperactivity is found early in the course of PD. Blood oxygenation level dependent activation was compared between 14 early-stage drug-naïve PD patients and 14 controls performing two precision grip force tasks using functional magnetic resonance imaging at 3 T. The grip tasks used in this study were chosen because both tasks are known to provide robust activation in BG nuclei, and the two tasks were similar except that the 2-s task required more switching between contraction and relaxation than the 4-s task. The 4-s task revealed that PD patients were hypoactive relative to controls only in putamen and external globus pallidus, and thalamus. In the 2-s task, PD patients were hypoactive throughout all BG nuclei, thalamus, M1, and supplementary motor area. There were no differences in cerebellar activation between groups during either task. Regions of interest analysis revealed that the hypoactivity observed in PD patients during the 2-s task became more pronounced over time as patients performed the task. This suggests that a motor task that requires switching can accentuate abnormal activity throughout all BG nuclei of early-stage, drug-naive PD, and that the abnormal activity becomes more pronounced with repeated task performance in these patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational model of precision grip in Parkinson's disease: a utility based approach

We propose a computational model of Precision Grip (PG) performance in normal subjects and Parkinson's Disease (PD) patients. Prior studies on grip force generation in PD patients show an increase in grip force during ON medication and an increase in the variability of the grip force during OFF medication (Ingvarsson et al., 1997; Fellows et al., 1998). Changes in grip force generation in dopam...

متن کامل

Adaptive grip force is modulated by subthalamic beta activity in Parkinson's disease patients

INTRODUCTION Healthy subjects scale grip force to match the load defined by physical object properties such as weight, or dynamic properties such as inertia. Patients with Parkinson's disease (PD) show an elevated grip force in dynamic object handling, but temporal aspects of anticipatory grip force control are relatively preserved. In PD patients, beta frequency oscillatory activity in the bas...

متن کامل

Temporal dynamics of basal ganglia under-recruitment in Parkinson's disease: transient caudate abnormalities during updating of working memory.

Using hybrid-blocked/event-related fMRI and the 2-back task we aimed to decompose tonic and phasic temporal dynamics of basal ganglia response abnormalities in working memory associated with early untreated Parkinson's disease. In view of the tonic/phasic dopamine hypothesis, which posits a functional division between phasic D(2)-dependent striatal updating processes and tonic D(1)-dependent pr...

متن کامل

Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease

Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. ...

متن کامل

Disconnecting force from money: effects of basal ganglia damage on incentive motivation.

Bilateral basal ganglia lesions have been reported to induce a particular form of apathy, termed auto-activation deficit (AAD), principally defined as a loss of self-driven behaviour that is reversible with external stimulation. We hypothesized that AAD reflects a dysfunction of incentive motivation, a process that translates an expected reward (or goal) into behavioural activation. To investig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 31 12  شماره 

صفحات  -

تاریخ انتشار 2010